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Abstract. We state the pertinent definitions and immediate results regarding

permutation groups.

1. Permutations and Cycles

Let X be a set. A permutation of X is a bijective function α : X → X. Set

Sym(X) = {α : X → X | α is bijective }.
The composition of bijective functions is bijective, and the composition of functions
from X to X is also a function from X to X. Thus we see that Sym(X) is closed
under the operation of composition. We know that composition of functions is
associative. The identity function on X is acts as an identity for composition, and
the inverse of a bijective function from X to X is also a bijective function from X
to X. Thus Sym(X) is a group under the operation of composition, which we call
the symmetry group of X.

It is conventional to use multiplicative notation to indicate composition in
Sym(X). Thus if α, β ∈ Sym(X), we write αβ to mean α ◦ β. We will denote
the identity function by ε, and the inverse of α is α−1, so that αα−1 = α−1α = ε.
Let n be a positive integer. The nth power of α is αn; this means α composed with
itself n times. We set α0 = ε, and α−n = (α−1)n.

The order of α is the smallest positive integer n such that αn = ε. If there is not
such n, then we say α has infinite order. If X is finite, however, it is clear that α
has finite order.

Let X = {1, 2, . . . , n}, and set

Sn = Sym(X).

That is, Sn is the set of permutations of 1 through n. We will use these groups as
a convenient vehicle for examples of the concepts which follow, but we should keep
in mind that Sym(X) is a more general concept (in particular, when X is infinite),
and most of what follows applies in general.

The size of Sn is the number of permutation of n things; this is

|Sn| = n!.
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One way to specify a member of Sn is as a 2×n array, where the top row consists
of the number 1 through n, in order, and the bottom row is the destinations of these
numbers. For example, let φ, ψ ∈ S5 be given by

φ =

(
1 2 3 4 5
2 3 1 5 4

)
and ψ =

(
1 2 3 4 5
3 5 1 4 2

)
.

Then φ(1) = 2, φ(2) = 3, and φ(3) = 1. Also, ψ(2) = 5, so ψφ(1) = ψ(2) = 5.
Compute that

φ2 =

(
1 2 3 4 5
3 1 2 4 5

)
and ψ2 =

(
1 2 3 4 5
1 2 3 4 5

)
;

thus, ψ2 = ε. Also,

ψφ =

(
1 2 3 4 5
5 1 3 2 4

)
, and φψ =

(
1 2 3 4 5
1 4 2 5 3

)
.

As we see from this example, composition permutations is not necessarily commu-
tative. We will continue to use these permutations as examples.

Let y ∈ X. The orbit of y under α is

orbα(y) = {x ∈ X | x = αn for some n ∈ Z}.
The set of orbits of α form a partition of X; that is, each element in X is in exactly
one orbit. An orbit is trivial if it contains exactly one element.

In our example:

orbφ(1) = {1, 2, 3}, orbφ(4) = {4, 5}, orbψ(4) = {4}.
We see that the orbit of 4 under ψ is trivial.

We say that y is a fixed point of α if α(y) = y. Thus, the orbit of y under α is
trivial if and only if y is a fixed point of α. The fixed set of α is

fix(α) = {x ∈ X | α(x) = x}.
The support of α is

supp(α) = {x ∈ X | α(x) 6= x}.
Thus supp(α) = X r fix(α).

The only fixed point of ψ is 4, so the fixed set of ψ is {4}. The fixed set of φ is
empty.

We say that two permutations α and β are disjoint if their supports are disjoint;
that is, if

supp(α) ∩ supp(β) = ∅.
For example, let

φ1 =

(
1 2 3 4 5
2 3 1 4 5

)
and φ2 =

(
1 2 3 4 5
1 2 3 5 4

)
.

Then supp(φ1) = {1, 2, 3} and supp(φ2) = {4, 5}, so these permutation have disjoint
support. Note that φ = φ2φ1 = φ1φ2.
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Proposition 1. Disjoint permutations commute.

Proof. Let α, β ∈ Sym(X) be disjoint. Let x ∈ X. Then x ∈ fix(α) or x ∈ fix(β),
for otherwise, x would be the support of both. Without loss of generality, let us
assume that x is fixed by α. That is, α(x) = x.

We claim that β(x) is fixed by α. To see this, suppose not; since β(x) cannot
be moved by both α and β, we must have that β(x) is fixed by β, so β2(x) = β(x).
Apply β−1 to both sides to see that β(x) = x, so x is fixed by β. Then α(β(x)) =
α(x) = x. That is, α sends β(x) to x = β(x), so indeed, α fixes β(x).

Thus α(β(x)) = β(x). This shows that αβ(x) = βα(x) for all x ∈ X, whence
αβ = βα. �

A cycle is a permutation with exactly one nontrivial orbit; it “cycles” the points
in the orbit, and fixes everything else. The length of a cycle is the size of its support.

For example, φ1 and φ2 are cycles.

Proposition 2. Every permutation of a finite set is a product of disjoint cycles.

Proof. Let α be a permutation of a finite set X. The orbits of α are disjoint sets.
For each such orbit O, define a function αO : X → X by

αO =

{
α(x) if x ∈ O;

x if x /∈ O.

Clearly αO is bijective. If {O1, . . . , Or} is the set of orbits of α, then

α =

r∏
i=1

αOi .

Since the cycles are disjoint, the order of composition does not matter. �

This leads us to our second way of writing elements of Sn, called cycle notation.
A cycle of length r is denoted by an ordered n-tuple α = (a1, a2, . . . , ar), which
indicates that α(a1) = a2, α(a2) = a3, and so forth, until α(ar) = a1:

α(ai) =

{
ai+1 if i < r ;

a1 if i = r.

This compact notation is more convenient. It is also common to write the tuple
without the commas; we use a special font to make this easier. Composition of
cycles is indicated by juxtaposition. Ordered tuples of length one are trivial, and
represent the identity permutation. These are generally not written.

For example, the some of the previous permutations we have seen, written in
this notation, are

φ1 = (1 2 3) = (1 2 3)

φ2 = (4 5)

φ = (1 2 3)(4 5)

ψ = (1 3)(2 5)

ψφ = (1 5 4 2)

φψ = (2 4 5 3)
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Note that there is more than one way to write a cycle: (1 3 5) = (3 5 1) =
(5 1 3). In general, we prefer to write the cycles with the least element of the
support farthest to the left. Also since disjoint cycles commute, (1 2 3)(4 5) =
(4 5)(1 2 3). Here, we prefer to write the disjoint cycles in increasing order of
their least element. Thus, the standard form of a permutation, written in disjoint
cycle notation, is

• Do not write trivial cycles. Write the identity as ε.
• Write each cycle starting with the least element of its support;
• Write the cycles, from left to right, in the order of the least element of its

support.

There is a unique standard form for any given permutation in Sn. Note, however,
that the n is not indicated in the notation. Unless otherwise indicated, we assume
that a given permutation is a permutation of 1 through n, where n is the largest
number in its support.

One sees that the inverse of a cycle is obtained by reversing the order of its
components:

(1 3 5 2 7 4)−1 = (4 7 2 5 3 1) = (1 4 7 2 5 3).

If we wish to multiply (compose) permutations written in cycles notation, we
need to “merge” them to place them in standard form. That is, we need to resolve
overlaps between the cycles, are rewrite the product as a composition of disjoint
cycles.

Example 1. Consider the permutation α = (2 8 3)(7 8)(2 5 6 3)(1 6). Plug in
1 on the right, and follow it through each permutation, from right to left. You will
get 2. Then, plug in 2, and see where it goes. Continue this until you get back to
1.

• 1→ (1 6) 7→ 6→ (2 5 6 3) 7→ 3→ (7 8) 7→ 3→ (2 8 3) 7→ 2, so 1 goes to 2
• 2→ (1 6) 7→ 2→ (2 5 6 3) 7→ 5→ (7 8) 7→ 5→ (2 8 3) 7→ 5, so 2 goes to 5
• 5→ (1 6) 7→ 5→ (2 5 6 3) 7→ 6→ (7 8) 7→ 6→ (2 8 3) 7→ 6, so 5 goes to 6
• 6→ (1 6) 7→ 1→ (2 5 6 3) 7→ 1→ (7 8) 7→ 1→ (2 8 3) 7→ 1, so 6 goes to 1

Thus, one of the disjoint cycles of the product is (1 2 5 6). However, we have not
completed the support of α. So, we find the smallest integer in the support of α
which is not in (1 2 5 6). This is three. So, we start with three to find the next
disjoint cycle.

• 3→ (1 6) 7→ 3→ (2 5 6 3) 7→ 2→ (7 8) 7→ 2→ (2 8 3) 7→ 8, so 3 goes to 8
• 8→ (1 6) 7→ 8→ (2 5 6 3) 7→ 8→ (7 8) 7→ 7→ (2 8 3) 7→ 7, so 8 goes to 7
• 7→ (1 6) 7→ 7→ (2 5 6 3) 7→ 7→ (7 8) 7→ 8→ (2 8 3) 7→ 3, so 7 goes to 3

Thus, the next cycle is (3 8 7). This completes the support of α, so we may rewrite
α as

α = (1 2 5 6)(3 8 7).

The shape of a permutation is the list of the lengths of the disjoint cycles, sorted
in increasing order. The order of the permutation is the least common multiple of
the numbers in the shape.

• shape (1 2)(3 4 5)(6 7) = [2, 2, 3], with order 6
• shape (1 2 3 4)(5 6 7)(8 9)(10 11 12) = [2, 3, 3, 4], with order 12
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2. Examples of Permutation Groups

2.1. Dihedral Groups. A dihedral group represents the rigid motions of a regular
n-gon; that is, if P is a regular polygon with n sides, the dihedral group on n vertices
is the set of all isometries P → P . Such a function is completely determined by
where it maps the vertices of the polygon; if we enumerate the vertices 1 through n,
each isometry is represented by the corresponding member of Sn which permutes
the vertices in the manner of the isometry.

There are exactly 2n permutations of the vertices which come from isometries;
these can be viewed as n rotations (including the identity) of one side, and then n
rotations following a reflection. We establish some standard notation to describe
dihedral groups.

Let ρ, τ ∈ Sn be given by

ρ = (1 2 . . . n) and τ =

{
(2 n)(3 n− 1) . . . (n+1

2
n+3
2 ) if n is odd;

(2 n)(3 n− 1) . . . (n2
n
2 + 2) if n is even.

Set

Dn = {ε, ρ, ρ2, . . . , ρn−1, τ, τρ, τρ2, . . . , τρn−1} ⊂ Sn.
Then Dn is a subgroup of Sn, called the dihedral subgroup. The proof that this is
a subgroup follows from the identity τρ = ρn−1τ . The dihedral group is generated
by ρ and τ ; it is the smallest subgroup of Sn which contains ρ and τ .

For example,

D5 = {ε,
(1 2 3 4 5), (1 3 5 2 4), (1 4 2 5 3), (1 5 4 3 2),

(2 5)(3 4), (1 3)(4 5), (1 5)(2 4), (1 2)(3 5), (1 4)(2 3)}.

2.2. Alternating Groups. A transposition is a two-cycle. Every permutation
may be written as a product of transpositions, in multiple ways. For example,

(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2) = (2 3)(1 4)(4 5)(1 3)).

Although the manner of doing this is not unique, the number of transpositions
is always either even or odd. A cycle of odd length requires an even number of
transpositions, and a cycle of even length requires an odd number of transpositions.

A permutation α ∈ Sn is called even if it can be written as a product of an even
number of transpositions; otherwise it is called odd. Exactly half of the permuta-
tions in Sn are even.

The product of even permutations is even, and the product of odd permutations
is even. The product of one odd and one even permutation is an odd permutation.

Set

An = {α ∈ Sn | α is even}.
Then An is a subgroup of Sn, called the alternating subgroup.

For example,

A4 = {ε,
(1 2 3), (1 3 2), (1 2 4), (1 4 2),

(1 3 4), (1 4 3), (2 3 4), (2 4 3),

(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
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Let H be a subgroup of Sn. Then either H consists of even permutations or
exactly half of the permutations in H are even. Thus either H ⊂ An, in which case
H ∩ An = H, or H ∩ An is exactly half of H. We outline the proof. Suppose that
H is not contained in An and let K = H ∩ An; we want to show that |H| = 2|K|.
Let α ∈ H be an odd permutation. Set αK = {ακ | κ ∈ K}. Then K ∪ αK = H,
K ∩ αK = ∅, and |K| = |αK|.

2.3. Generalized Klein Groups. If G is a group, H is a subgroup of G, and K
is a subgroup of H, then K is a subgroup of G.

If G is a group, and H and K are subgroups of G, then their intersection H ∩K
is a subgroup of G.

Set Kn = Dn ∩ An. Then Kn is a subgroup of Sn, and either Kn = Dn or Kn

is exactly half of Dn. Let us examine the relationship between n and the structure
of the group Kn.

Problem 1. Let H ≤ Sn. Show that either H ≤ An or |H| = 2|H ∩An|.

Problem 2. Let n = 4.

(a) Compute ρ and τ in this case.
(b) Show that K4 is a noncyclic abelian subgroup of S4.

Problem 3. Let n = 5.

(a) Compute ρ and τ in this case.
(b) Show that K5 = D5.

Problem 4. Let n = 7.

(a) Compute ρ and τ in this case.
(b) Show that K7 is a cyclic subgroup of S7.

Problem 5. Try to generalize the previous problems: what can you say about Kn

in the following cases?

(a) n ≡ 0 (mod 2)
(b) n ≡ 1 (mod 4)
(c) n ≡ 2 (mod 4)
(d) n ≡ 3 (mod 4)
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